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ABSTRACT: Synthetic biology aims to rationally construct
biological devices with required functionalities. Methods that
automate the design of genetic devices without post-hoc
adjustment are therefore highly desired. Here we provide a
method to predictably design genetic toggle switches with
predetermined bistability. To accomplish this task, a
biophysical model that links ribosome binding site (RBS)
DNA sequence to toggle switch bistability was first developed
by integrating a stochastic model with RBS design method.
Then, to parametrize the model, a library of genetic toggle
switch mutants was experimentally built, followed by establish-
ing the equivalence between RBS DNA sequences and switch
bistability. To test this equivalence, RBS nucleotide sequences
for different specified bistabilities were in silico designed and
experimentally verified. Results show that the deciphered
equivalence is highly predictive for the toggle switch design
with predetermined bistability. This method can be general-
ized to quantitative design of other probabilistic genetic
devices in synthetic biology.
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The goal of synthetic biology is to rationally build synthetic
biological circuits with desired functionalities.1 Since the

genetic toggle switch2 and the repressilator,3 two landmarks in
synthetic biology, significant progress in this line of research has
been made. Genetic devices with a wide range of functionalities
have been created,4 for example, genetic switches,5−7

oscillators,8−11 and Boolean logic processors.12−14 Despite
this progress, however, some tremendous challenges still
remain, one of which is how to rationally build genetic devices
with predetermined performance.4,15

Among the most commonly used genetic devices in the
functional circuit design is the toggle switch.2,7,15 The genetic
toggle switch is of great importance both in nature16 and in
artificial synthetic biology circuit15 due to its bistability. This
property not only confers cells the ability to stochastically
switch between phenotypic states to generate diversity in a
population17,18 but also makes the toggle switch the core
component of gene circuits for higher-level sequential logic
processes, such as adaptive learning.2,7,15 We previously
constructed a robust genetic toggle switch using phage
repressors cI and cI434;7 the fine-tuning of the switch
bistability, however, still needs the building of large component

libraries, such as a ribosome binding site (RBS) mutant library,
followed by individual characterization and modeling, which is
laborious and time-consuming.4,7,15,19 Moreover, this process
probably needs to be repeated case by case during gene circuit
construction, because of different requirements toward the
switch bistability for module assembly.
Therefore, there is a pressing need to develop methods to

rationally design genetic devices with predetermined character-
istics.15,20 Recently, studies have shown that biological process
can be quantitatively modeled and reliably predicted if
integrated modeling is undertaken.21−23 Salis et al. have
developed a thermodynamic model to quantify translation
strength of RBS in bacteria.23 Software derived from this model,
called the RBS calculator, can be used to both rationally
forward-engineer RBS sequences with predetermined trans-
lation strength and quantitatively predict translation strengths
of different RBS sequences for a given protein coding
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sequence.23 It has been regarded as a powerful tool to help the
rational design of genetic devices.1,15,19

Here we provide a method for rational design of genetic
toggle switches with predetermined bistability. A stochastic
model was first constructed to guide the experimental
implementation of bistability tuning. By integrating the
stochastic model with the RBS design method, the relationship
(equivalence) between the RBS DNA sequence of cI434 and
the toggle switch bistability was then established. A library of
genetic toggle switches with different RBS sequences prefixing
cI434 was then experimentally built. We analyzed the mutation
library and parametrized the equivalence. With this equivalence,
RBS nucleotide sequences predicted for different specified
switch bistability were in silico designed and experimentally
verified. Our experimental results demonstrate that this method
could be very predictive and extensible for the rational design of
genetic toggle switches.
In this research, the genetic toggle switch mainly consists of a

positive feedback loop and a double-negative feedback loop7

(Figure 1A). The promoters PR and PRM control, respectively,
the expression of two mutually repressed repressors, CI434 and
CI. In addition, CI can activate promoter PRM, which reinforces
the bistable behavior by increasing the bistability robustness of
the circuit.7 Green fluorescence protein (EGFP) and red
fluorescence protein (mRFP) were, respectively, adopted as
indicators of CI or CI434 expression dominance within a cell
(Figure1A). Intuitively, modulating the translation strength of
CI (rCI) or CI434 (rCI434) and thereby the repression balance
between cI and cI434 could tune the switch bistability. To

quantitatively address this tuning effect, we constructed a set of
ordinary differential equations (ODEs), based on which a
stochastic model was further built to simulate its kinetic
dynamics (see Supporting Information). With reasonable
parameter sets (Supplementary Table S4), a cell population
was simulated in silico, and the bistable distribution of this cell
population as function of rCI434 and rCI strength was recorded.
Our computer simulation showed that at the asymptotic state
(after a long period of reaction time) the proportion of GFP-
dominant cells (PGC) was mainly determined by the value of
rCI434 and rCI only, and regardless of initial states (see
Supporting Information). Figure 1B provides the bistable
distribution of cell population as a function of rCI and rCI434.
When rCI is small but rCI434 is large, population tends to be
CI434-dominant (i.e., GFP-dominant), and thereby PGC tends
to be nearly 100%, whereas with large rCI but small rCI434, most
cells would be CI-dominant (i.e., RFP-dominant), and PGC
would be quite close to 0% (Figure 1B).
In order to make later experimental quantification easier, we

took PGC as an index to describe switch bistability. PGC is a
function of rCI434 and rCI, as shown in eq 1 (see the detailed
mathematical derivation in Supporting Information):

= f r rPGC ( , )CI CI434 (1)

The quantitative relationship between rCI434 and switch
bistability (PGC) can thus be established in later simulation.
Two characteristics stand out in Figure 1B: the asymmetric

response of PGC to rCI and rCI434 and the narrow bistability

Figure 1. Bistable distribution of cell population as a function of translation strength of CI434 and CI. (A) Detailed schematic of genetic toggle
switch used in this work. Rectangles and ovals represent genes and their translated proteins, respectively. Solid lines with arrows indicate regulating
relations between genes, with sharp ones representing activation and blunt ones repression. (B) Simulation results showing bistable distribution of
cell population as a function of rCI and rCI434. Different colors show diverse PGC values, as indicated by color bar on the right. The colorful band from
bottom left to top right is the transition interval from PGC ≈ 100% (dark red region) to PGC ≈ 0% (blue region). (C) Fold variations of rCI and
rCI434 across the bistability transition interval calculated from 10,000 different toggle switches in silico. Shown here is one representative of three
independent simulation results. See the calculation method shown in Supplementary Figure S1. Larger fold variation of rCI or rCI434 is equivalent to
wider respective transition interval. Each point represents a set of fold variations of rCI and rCI434 for a specific toggle switch. Black line stands for rCI =
rCI434.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300027y | ACS Synth. Biol. 2012, 1, 284−290285



transition interval. The first characteristic is mainly due to
asymmetric circuit topology (see Supporting Information),
which does not cause any difficulty in circuit design; the
second, however, warrants special concern. One observes that
the transition interval from large PGC (≈100%) to small PGC
(≈0%), a parameter space region where diverse bistable
distribution exists, is quite narrow (although “wide” enough
compared with other topologies taken previously7). Therefore,
we need to investigate a way to fine-tune the control
parameters within such a sharp interval for the system in
order to predetermine bistable state (i.e., predetermined PGC).
Reasonably, within the bistability transition interval (Figure

1B), the larger fold the control parameter (rCI or rCI434) could
change over, the more meticulously the bistability could be
tuned. We thus need to select a more tunable parameter
between the two. For this purpose, we simulated 10,000 toggle
switches (with different sets of rCI and rCI) randomly adopted
from Figure 1B and calculated fold variation of rCI434 and rCI
across the bistability transition interval by varying rCI and rCI434,
respectively (larger fold variation of rCI or rCI434 indicates wider
respective transition interval). As an example shown in
Supplementary Figure S1, when rCI was fixed, the fold variation
of rCI434 was 5.0 for PGC to vary from 10% to 90%; when rCI434
was fixed, the fold variation of rCI was 3.1 for the same purpose.
Simulation was independently performed three times. For each
simulation, all sets of fold variations of rCI and rCI434 calculated
were plotted (Figure 1C, Supplementary Figure S2). Most
points (>99% throughout all three sets of simulation results)
locate below the line corresponding rCI = rCI434, indicating that
the fold variation of rCI434 is much larger than that of rCI in most
cases. We concluded that control parameter rCI434 permits a
wider transition interval. Besides, considering the possible error
of experimental implementation, the effect of tuning rCI will be
unpredictable due to its narrow bistability transition interval.
Therefore, we decided to use rCI434 as the control parameter for
bistability fine-tuning.
We then fixed rCI as a constant, and as a result PGC

presented as the function of rCI434 only (Supplementary
Discussion):

= f rPGC ( )CI 434 (2)

Accordingly, cell population distribution as a function of rCI434
for 1000 cells was simulated. As expected, rCI434 smoothly
affects the bistable distribution of cell population: the larger
rCI434 is, the larger PGC (Figure 2) represents. For instance,
three distinct values of rCI434 (0.15, 0.70, and 1.05 au) resulted
in different bistable distributions of cell population (PGC of
8.7%, 50.4%, and 93.2%, respectively). The variation fold of
rCI434 within the bistability transition interval (PGC from 10%
to 90%) is 40 (Figure 2). As a control, similar simulation on cell
population distribution as a function of rCI was also performed,
the result of which was a variation of 2 fold (Supplementary
Figure S3).
The next task is to establish the relationship between rCI434

and the RBS DNA sequence. For any specific mRNA sequence
of cI434, we could calculate the difference of Gibbs free energy
between the folded nascent mRNA transcript state and the
assembled 30S pre-initiation complex state, ΔGCI434, using the
RBS calculator (Figure 4A). In an equilibrium statistical
thermodynamic model based on Salis et al.,23 rCI434 could be
quantified through eq 3:

= β− Δr K eCI CI
G

434 434
CI434 (3)

where β is the apparent Boltzmann constant, and constant
KCI434 depends on factors independent of CI434 translation
initiation. Equation 3 predicts a linear relationship between ln
rCI434 and ΔGCI434, which could be transformed as

= −βΔ +r G Kln lnCI CI CI434 434 434 (4)

By integrating the stochastic model (eq 2) with the RBS
calculator (eq 4), it was expected that the values of KCI434 and β
could be specified through rCI434 (solved from PGC) and
ΔGCI434 (calculated from RBS DNA sequence). Thus the
equivalence relationship between cI434 RBS DNA sequence
and switch bistability (PGC) was established. We next sought
to experimentally address it.
Using the construction flow developed previously,7 an

original version of cI-cI434 toggle switch was constructed and
then cloned into pSB1C3 plasmid backbone via standard
assembly.24 In order to modulate rCI434, directed mutagenesis
was performed (the detailed sequence feature of the original
toggle switch is shown in Supporting Material). Degenerate
primers were used to introduce random mutations at the RBS
sequence prefixing the cI434 coding sequence (Supplementary
Figure S4A). Together with the original switch, 69 resulted
mutants were randomly selected for the following character-
ization (regarded as 70 mutants later on). Each switch mutant
was then transformed into E. coli. DH5α cells, followed by
overnight growth under 37 °C and overnight storage under 4
°C to accumulate enough fluorescence proteins.
We statistically examined PGC, the bistability index, of all 70

toggle switch mutants on agar plates via a convenient scoring
method. For a colony expressing RFP only, its score is 0, and
for a colony expressing GFP only, its score is 1. As for a “mosaic
colony”, it was scored according to the surface proportion of
GFP-expressing section (Supplementary Figure S7). The

Figure 2. The proportion of GFP-dominant cell (PGC) within a cell
population is smoothly affected by translation strength of CI434. In
the left panel, the horizontal axis denotes CI434 expression level while
the vertical axis represents rCI434. Different colors stand for normalized
cell density, as indicated by the color bar at the top. With increasing
rCI434, distribution of cell population smoothly transits from CI-
dominant state (RFP-dominant state, with expression level of CI434
around 10 au) to CI434-dominant state (GFP-dominant state, with
expression level of CI434 higher than 103 au). When rCI434 is small,
cells tend to highly express CI, as represented by the dashed line at the
bottom (left panel), where PGC is 8.7% (right panel). With a fairly
large rCI434, some cells show a RFP-dominant state while others show
GFP-dominance, indicated by the dashed line in the middle (left
panel), and its corresponding PGC is 50.4% (right panel). When rCI434
is large enough, most cells would be CI434-dominant, as the top
dashed line (left panel) and subfigure represents, with a PGC of 93.2%
(right panel).
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mosaic colonies denote colonies whose expression of
fluorescence reporters was not overlapping but sectored
(Supplementary Figure S6). This phenomenon was also
observed previously;7 it could be attributed to the stochastic
establishment of different stable states during early stage
growth of colony. The resulted sum score of each selected
region was normalized by the total number of colonies scored
in a region, derived as a relative score, the required PGC.
Results showed that, for 20 mutants out of 70, their PGC values
locate within a range of 2−98%. Especially, 6 of them fell into
the range of PGC from10% to 90%, the significant bistability
transition interval (Figure 3A, Figure 4B, Supplementary Table
S1).
Serving as control, mutagenesis was also performed at RBS-cI

sequence of the original toggle switch (Supplementary Figure
S4B). Using the same treatment as above, 36 toggle switch
mutants were selected and characterized. Reassuringly, among
36 mutants, only one mutant’s PGC value locates within 2−
98% (Figure 3B, Supplementary Table S3). All other mutant
toggle switches result in either PGC = 100% (all colonies are
green) or PGC = 0% (all colonies are red). The mutation
results support our modeling conclusion that rCI434 tunes the
switch bistability much more meticulously than rCI because of
the larger variation fold of rCI434 within bistability transition
interval.
To precisely parametrize β and constant KCI434 in eq 4, RBS-

cI434 mutants whose PGC values ranged from 10% to 90%
were selected and sequenced (Table 1). Acquired RBS
sequences were exploited to predict the Gibbs free energy
change of translation initiation (ΔGCI434) using online RBS
Calculator v1.1 (Figure 4A). Calculated ΔGCI434 of these RBS
mutants ranged from 0.75 kcal/mol (the strongest) to 6.75

kcal/mol (the weakest) (Table 1, Figure 4B). Then, using the
information from numerical simulation (Figure 2), the rCI434
value was evaluated for the selected RBS mutants that have
different values of PGC. Thereby, constant KCI434 and apparent
Boltzmann constant β can be parametrized by linear regression
between ln rCI434 and ΔGCI434 based on eq 4 (inset in Figure 5).
In this way, the value of ln KCI434 was evaluated to be 2.21 ±
0.06 (R2 = 0.997), and β value was measured to be 0.50 ± 0.01
mol/kcal. With evaluated constant KCI434 and β, an equivalence
curve relating ΔGCI434 of cI434 RBS to switch bistability (PGC)
was thereby parametrized according to eqs 4 and 2 (Figure 5,
Supplementary Discussion).
Beside predicting rCI434 for given RBS sequences, RBS

Calculator can also automatically design RBS sequences to

Figure 3. Mutation libraries of RBS sequences prefixing cI434 and cI. (A) All selected toggle switch mutants from mutagenesis at cI434-RBS. 20
mutants out of 70 show PGC value ranging from 2% to 98%. (B) All selected toggle switch mutants from mutagenesis at cI-RBS. Note that
compared with panel A, among 36 toggle switch mutants only 1 shows a PGC value within 2−98%.

Table 1. Sequences and Statistics of cI434 RBS Mutants

no. RBS sequences ΔG (kcal/mol) PGC (%)

RBS-cI434 Library Mutants Used for Parametrization
C01 5′-TTTATGTGGTTGTATG-3′ 5.65 21 ± 7
C42 5′-CGAGACCGGTTGTATG-3′ 3.21 90.9 ± 0.8
C68 5′-CTTCCGTGGTTGTATG-3′ 4.75 60 ± 2
C77 5′-AGACAACGGTTGTATG-3′ 6.75 8 ± 2
E07 5′-CCAAAACGGTTGTATG-3′ 3.35 88 ± 1
E06 5′-CCTAACCGGTTGTATG-3′ 4.35 64 ± 5

In silico Designed cI434 RBSs Using the Equivalence Curve
F01 5′-ACAACCCGGTTGTATG-3′ 8.05 0
F02 5′-ATACTTCGGTTGTATG-3′ 6.65 1.0 ± 0.3
F03 5′-CCTAGGCGGTTGTATG-3′ 4.55 42 ± 5
F04 5′-CCGCCGAGGTTGTATG-3′ 3.65 87 ± 5
F05 5′-AATACGAGGTTGTATG-3′ 2.15 99.1 + 0.4
F06 5′-CATCAGAGGTTGTATG-3′ 0.75 100
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meet desired ΔGCI434 values. Therefore, RBS sequences that
drive the genetic toggle switch with predetermined PGC values
could be in silico predicted based on the equivalent curve

deciphered in Figure 5. To confirm this, six RBS sequences
expected to bring about distinct PGC values throughout the
bistability transition interval (from PGC = 0% to PGC = 100%)
were in silico designed (Table 1). To experimentally validate
them, directed mutagenesis was conducted at the RBS region of
cI434 on the original toggle switch to introduce designed RBS
sequences. Reassuringly, PGC values of these rationally
designed toggle switches precisely fit the prediction (Figure
5), indicating that the equivalence curve is very predictive.
With the deciphered equivalence, the process of derivation,

optimization, and construction of our cI-cI434 genetic toggle
switch can be accelerated for future study and application, such
as fine-tuning the toggling threshold of the “memory module”
in an adaptive learning gene circuit.15 What’s more, engineered
microbial consortia have been widely expected to be promising
in metabolic engineering, in which heavy metabolic burden is
divided into separate “cell types”.25,26 A problem, however, still
remains in regard to how to maintain the consortium
homeostasis. Reasonably, toggle switches with predetermined
bistability could act as a “population balancer” to balance the
fractions of different phenotypes within a genetically homoge-
neous population.27,28 If two pathways, for example, the ones to
metabolize glucose and xylose, are controlled by a toggle
switch, the fractions of Escherichia coli cells to metabolize only
glucose and only xylose can be predetermined and robustly
balanced.29 When grown in co-culture, this strain can ferment
sugars both efficiently and robustly.
Furthermore, this method can be generalized to genetic

toggle switches made out of other different transcription
repressors (Supplementary Discussion), facilitating the con-
struction of biological circuits with increasing complexity. For
instance, it has been proposed that a bank of genetic toggle
switches with different bistability (i.e., different toggling
thresholds) can act together as a “digital-to-analog converter”
to discretize analog inputs into levels of digital output via
sequential toggling.15

Figure 4. Tuning translation strength of cI434 by mutating its RBS sequence. (A) The RBS sequence prefixing cI434 could be converted into
ΔGCI434, the free energy change before and after translation initiation, by RBS calculator v1.1 (on the Web site of the Salis lab). (B) Images of cells
carrying three representative toggle switch mutants (from left to right): C77, C68, and C42. Images are representatives of 5 independent recordings
(Supplementary Figure S2), captured by fluorescence stereomicroscope and then merged. Each dot represents a colony.

Figure 5. Establishment and verification of equivalence curve between
ΔGCI434 and toggle switch bistability. With β and KCI434, the
equivalence curve was established (red solid line). Six RBS sequences
predicted to exhibit different PGC values (0%, 0.5%, 58%, 86%, 99.4%,
and 100%, respectively) with corresponding ΔGCI434 values (8.05, 6.65,
4.55, 3.65, 2.15, 0.75 kcal/mol) according to this equivalence curve
were in silico designed and introduced into the toggle switch, resulting
in cI434 RBS mutants F01, F02, F03, F04, F05, F06 (black squares).
Experimentally measured PGC values of all six mutants are 0%, (1.0 ±
0.3)%, (42 ± 5)%, (87 ± 5)%, (99.1 + 0.4)%, and 100%, respectively.
Inset: linear regression between ΔGCI434 and rCI434 to parametrize β
and KCI434. Six mutants, C01, C42, C68, C77, E07, and E06 (gray
crosses in either figure), with different PGC values ((21 ± 7)%, (90.9
± 0.8)%, (60 ± 2)%, (8 ± 2)%, (88 ± 1)%, and (64 ± 5)%,
respectively) were utilized for parametrization. RBS sequences were
converted into ΔGCI434 via RBS calculator, while rCI434 was numerically
calculated from PGC on the basis of eq 2.
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Moreover, it is difficult, if not impossible, to program many
indispensable biological processes, such as bet-hedging and cell
fate differentiation, without probabilistic genetic devi-
ces.18,19,27,28 The rational design of probabilistic genetic
devices, however, is more difficult than those carefully studied
deterministic ones, because the function of a probabilistic
device is not an input-output relation but a dynamic process
featured by stochasticity. Our research here provides a
promising approach to rationally designing probabilistic genetic
devices by combining RBS design method with reflective
stochastic model, i.e., establishing an equivalence between DNA
sequence and device function.
In summary, in this report we have described a method to

establish equivalence between the RBS DNA sequence of a
toggle switch and its bistability. Since synthetic biology aims to
program cells quickly and predictably,1,4,15 model studies that
are able to map a genetic device DNA sequence to its function
will dramatically facilitate the development and application of
synthetic biology for biotechnology use.1,19 In this aspect, this
research can serve as a good example.

■ METHODS
Translation Strength Prediction and RBS Sequence

Designing. Translation strength of cI434 RBS was calculated
using online RBS calculator v1.1: “Reverse Engineer RBS”
(https://salis.psu.edu/software/reverse). RBS sequences meet-
ing predetermined translation strength were designed using
another module of online RBS calculator v1.1: Design: “RBS
with Constraints” (https://salis.psu.edu/software/forward_
withConstraints).
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